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Abstract. We give criteria for determining the approximate length of ele-
ments in any given cyclic subgroup of the Thompson-Stein groups F (n1, ..., nk)
in terms of the number of leaves in the minimal tree-pair diagram repre-
sentative. This leads directly to the result that cyclic subgroups are quasi-
isometrically embedded in the Thompson-Stein groups. This result also leads
to the corollaries that Zn is also quasi-isometrically embedded in the Thompson-
Stein groups for all n ∈ N and that the Thompson-Stein groups have infinite
dimensional asymptotic cone.

1. Introduction

In this paper, we continue an exploration of the metric of the Thompson-Stein
groups that was begun in [16]; in [16], we gave sharp upper and lower bounds
on the metric of F (n1, ..., nk), showing that the lower bound is logarithmic and
the upper bound is linear with respect to the number of leaves in the minimal
tree-pair diagram representative of an element. In this paper, we explore how
the number of leaves in the minimal tree-pair diagram grows as we take powers
of an element. This leads to results about quasi-isometric embeddings of cyclic
subgroups in F (n1, ..., nk), but the long-term aim of this approach is much broader:
to understand how the number of leaves in the minimal tree-pair diagram grows as
we take general products of elements of F (n1, ..., nk). Our aim in future will be to
extend the results of this paper to more general classes of products so that we may
better understand how to calculate the metric of all elements in F (n1, ..., nk).

Burillo showed in [7] that Z and Zn are quasi-isometrically embedded in F , and
since the asymptotic cone of Zn is infinite dimensional, this led directly to his re-
sult that F is the first known example of finitely-presented group with infinite-
dimensional asymptotic cone. We extend these results to the Thompson-Stein
groups here.

Melanie Stein was one of the first to study the Thompson-Stein groups in depth.
In [14], Stein explored the homological and simplicity properties of F (n1, ..., nk);
she showed that they are of type FP∞ and finitely presented, and gave a technique
for computing infinite and finite presentations. In [16] we developed the theory of
tree-pair diagram representation for elements of F (n1, ..., nk), gave a unique normal
form, and calculated sharp bounds on the metric in terms of the number of leaves
in the minimal tree-pair diagram representative using Stein’s presentations. These
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results were used to prove that the inclusion embedding of F into F (n1, ..., nk) is
distorted in [17]. Now we use the results of [16] to show that all cyclic subgroups,
or copies of Z, are quasi-isometrically embedded in F (n1, ..., nk).

Definition 1.1 (Thompson-Stein group F (n1, ..., nk)). The Thompson-Stein group
F (n1, ..., nk), where n1, ..., nk ∈ {2, 3, 4, ...} and k ∈ N, is the group of piecewise-
linear orientation-preserving homeomorphisms of the closed unit interval with finitely-
many breakpoints in the ring Z[ 1

n1···nk
] and slopes in the multiplicative group 〈n1, ..., nk〉

in each linear piece. Here F = F (2).

We could equivalently say that every element of F (n1, ..., nk) is a continuous
piecewise-linear map with the fixed endpoints (0, 0) and (1, 1) and finitely-many
breakpoints in the ring Z[ 1

n1···nk
] (see Figure 1 for a sample group element).

Figure 1. An element of F (2, 3).

The Thompson-Stein groups can be viewed as a generalization of Thompson’s
group F , which Robert Thompson introduced in the early 1960s (see [15]). There
are actually three groups in the literature that are frequently referred to as Thomp-
son’s groups, F ⊂ T ⊂ V ; Cannon, Floyd and Parry provide a good introduc-
tion to these groups in [8]. Thompson’s group F and the Thompson-Stein group
F (n1, ..., nk) (see [14]) are groups of piecewise-linear homeomorphisms of the real
line. Higman, Brown, Geoghegan, Brin, Squier, Guzmán, Bieri and Strebel have all
explored general classes in this family of groups, each of which can be considered
to be a generalization of the Thompson groups (see [13], [5], [4], [2], [3], and [1] for
details). Much of the introductory material in this paper is summarized from [16];
more detail can be found there.

The major results of this article hold for all groups of the form F (n1, ..., nk)
which satisfy the condition n1− 1|nj − 1 for all j ∈ {1, ..., k}. Groups which do not
satisfy this criteria have a different group presentation.

2. Representing elements using tree-pair diagrams

Metric properties of the Thompson and Thompson-Stein groups depend on the
representation of elements of these groups by tree-pair diagrams. An (n1, ..., nk)–ary
tree is a tree which contains only carets whose number of edges are in {n1, ..., nk}.
For example, Figure 2 is a (2, 3, 5)–ary tree. If each vertex in a tree represents

Figure 2. A (2, 3, 5)–ary tree.

a subinterval of [0, 1], then every element of F (n1, ..., nk) can be represented by
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an (n1, ..., nk)–ary tree-pair diagram and vice versa. An (n1, ..., nk)–ary tree
represents subdivision of [0, 1] using the following recursive process, which assigns
a subinterval to each leaf in the tree: the root vertex represents [0, 1]; for a given
n–ary caret in the tree with parent vertex representing [a, b], the n child vertices
represent [

a, a +
1
n

]
,

[
a +

1
n

, a +
2
n

]
, ...,

[
b− 1

n
, b

]

respectively. So the subintervals for leaves of the tree in Figure 2 are:{[
0,

1
10

]
,

[
1
10

,
1
5

]
,

[
1
5
,
2
5

]
,

[
2
5
,
3
5

]
,

[
3
5
,
4
5

]
,

[
4
5
,
5
6

]
,

[
5
6
,
13
15

]
,

[
13
15

,
14
15

]
,

[
14
15

, 1
]}

Two (n1, ..., nk)–ary trees are equivalent iff they represent the same subdivision of
[0, 1].

The leaves in a tree are numbered beginning with zero, in increasing order from
left to right, based on the order of their corresponding subintervals in [0, 1]. An
(n1, ..., nk)–ary tree-pair diagram is then an ordered pair of (n1, ..., nk)–ary trees
with the same number of leaves. So the element of F (n1, ..., nk) represented by a
given tree-pair diagram is the map which takes the subinterval represented by the
ith leaf in the domain tree to the subinterval represented by the ith leaf in the
range tree. Because every element of F (n1, ..., nk) is a piecewise-linear map with
fixed endpoints, it can be determined solely by the length of ordered subintervals in
the domain and range. For example, the element given in Figure 3 is just the map:{[

0, 1
2

]
,
[
1
2 , 3

4

]
,
[
3
4 , 1

]} → {[
0, 1

3

]
,
[
1
3 , 2

3

]
,
[
2
3 , 1

]}
, which is the same as the element

of F (n1, ..., nk) represented by the map given in Figure 1.

Figure 3. The element of F (2, 3) given by the homeomorphism
in Figure 1.

Theorem 2.1 (Equivalent trees [16]). Two trees are equivalent iff one tree can be
obtained from the other through a finite sequence of subtree substitutions of the type
given in Figure 4(a) (for any p, q ∈ {n1, ..., nk} such that p 6= q).

For example, when n1 = 2 and n2 = 3, for k = 2, the only substitution of this
type is given in Figure 4(b).

Notation 2.1 (L(T ), L(T−, T+), L(x)). The notation L(T ), L(T−, T+), and L(x)
denotes the number of leaves in the tree T , in either tree of the tree-pair diagram
(T−, T+), and in either tree of the minimal tree-pair diagram representative for x
respectively.

2.1. Tree-pair diagram composition. To compute xy for x, y ∈ F (n1, ..., nk),
x = (T−, T+), y = (S−, S+), we must make S+ identical to T−. This can be accom-
plished by adding carets to T− and S+ (and by extension to the leaves with the same
index numbers in T+ and S− respectively) until the valence of any leaves with the
same index number in both T− and S+ is the same. If we let T ∗−, T ∗+, S∗−S∗+ denote
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(a) Dotted line carets are p–ary and solid
line carets are q–ary, where where p, q ∈
{n1, ..., nk}, p 6= q.

(b) Equivalent sub-
tree substitution for
F (2, 3).

Figure 4. Subtree substitutions of this form can be used to turn
a tree into any equivalent tree.

T−, T+, S−, S+, respectively, after this addition of carets, then xy is represented by
the (possibly non-minimal) diagram (S∗−, T ∗+).

Figure 5. Composition of two elements of F (2, 3). The black
carets make up the original tree-pair diagrams for each element,
and grey hatched carets represent carets added so that composition
can take place.

This process of composition always terminates.

Notation 2.2 (
(
(Ty)−, (Ty)+

)
). When computing the product xy where x = (T−, T+),

the notation
(
(Ty)−, (Ty)+

)
denotes the tree-pair diagram which results from the

composition of x◦y, before it has been reduced by removing any exposed caret pairs.

2.2. Equivalence of trees and tree-pair diagrams.

Corollary 2.1 (Wladis, [16]). An (n1, ..., nk)–ary tree T can be written as an
equivalent tree S with m–ary root caret if and only if S can be transformed into T
through a finite sequence of subtree substitutions of the type given in Figure 4(a).

Theorem 2.2 (Wladis, [16]). Any two equivalent (n1, ..., nk)–ary tree-pair dia-
grams can be transformed into one another by a finite sequence consisting solely of
the following two types of actions:

(1) addition or cancelation of exposed caret pairs
(2) subtree substitutions of the type given in Figure 4(a)
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3. The Metric in F (n1, ..., nk)

3.1. Standard Finite Presentation. In [14] Stein gave a method for finding the
finite presentations for the groups F (n1, ..., nk); in [16] the exact finite presentations
were given explicitly.

Theorem 3.1 (Finite Presentation of Thompson’s group F (n1, ..., nk), [16]). Thomp-
son’s group F (n1, ..., nk), where n1 − 1|ni − 1 for all i ∈ {1, ..., k} has the following
finite presentation:
The generators of this presentation are:

(yi)0, ..., (yi)ni−1, (zj)0, ..., (zj)ni−1

where i ∈ {2, ..., k}, j ∈ {1, ..., k}. Tree-pair diagram representatives for these
generators can be seen in Figure 6.

Figure 6. The generators of F (n1, ..., nk), where ni = pi + 1 for
all i ∈ {1, ..., k} and where solid lines indicate n1–ary carets and
dashed lines indicate ni–ary carets.

The relations of this presentation are:
(1) For (γm)j a generator in the set {(ym)j , (zm)j |m ∈ {1, ..., k}}, j = 0, ..., nm−

1
(a) (zl)−1

i (γm)j(zl)i = (zl)−1
0 (γm)j(zl)0

(b) (zl)−1
i (zl)−1

0 (γm)j(zl)0(zl)i = (zl)−2
0 (γm)j(zl)20

(c) (zl)−1
nl−1(zl)−2

0 (γm)1(zl)20(zl)nl−1 = (zl)−3
0 (γm)j(zl)30

for all l ∈ {1, ..., k} whenever i < j.
(2) For all i, j ∈ {1, ..., k}, (where we use the convention that (y1)i is the iden-

tity)
(a) (yi)0(yj)1(zj)0(zj)nj · · · (zj)(ni−2)nj

= (yj)0(yi)1(zi)0(zi)ni · · · (zi)(nj−2)ni

(b) (yi)1(yj)2(zj)1(zj)1+nj · · · (zj)1+(ni−2)nj
= (yj)1(yi)2(zi)1(zi)1+ni · · · (zi)1+(nj−2)ni

(3) For all i, j ∈ {1, ..., k},
(a) (zi)0(zj)0(zj)nj · · · (zj)(ni−1)nj

= (zj)0(zi)0(zi)ni · · · (zi)(nj−1)ni

(b) (zi)1(zj)1(zj)1+nj · · · (zj)1+(ni−1)nj
= (zj)1(zi)1(zi)1+ni · · · (zi)1+(nj−1)ni

3.2. The Metric. The metric in F (n1, ..., nk) in this paper is always with respect
to the standard finite generating set given in Section 3.1.

Theorem 3.2 (Wladis [16]). For any element x ∈ F (n1, ..., nk),there exist con-
stants b, c ∈ N such that

b log L(x) ≤ |x|X ≤ cL(x)

where we recall that L(x) denotes the number of leaves in the minimal tree-pair
diagram representative of w.
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4. Cyclic Subgroups are Quasi-isometrically Embedded in F (n1, ..., nk)

Definition 4.1 (quasi-isometric embedding). We say that length functions f :
X → R∗, g : Y → R∗ are quasi-isometric if there exists an embedding γ : X → Y
and fixed c1, c2 > 0 such that for all x ∈ X:

c1f(x) ≤ g
(
γ(x)

) ≤ c2f(x)

When the length functions are obvious from the context, we say simply that that the
sets X and Y are quasi-isometric.

We say that a subgroup S of a group G is quasi-isometrically embedded if the
length function of S and the induced length function on S ⊂ G coming from the
inclusion embedding are quasi-isometric. The property of the existence of a quasi-
isometric embedding between two groups is a group invariant.

The property of the existence of a quasi-isometric embedding between two sets is
also transitive; that is, if ∼ denotes the property of being quasi-isometric, then if
X ∼ Y and Y ∼ Z, then X ∼ Z.

We will use the notation X ∼ Y throughout this paper to indicate that X is
quasi-isometric to Y .

The aim of this section is to show that all copies of Z in F (n1, ..., nk) are quasi-
isometrically embedded. Specifically we will show that all x ∈ F (n1, ..., nk) break
down into two cases (for n ∈ N):

(1) |xn|F (n1,...,nk) is quasi-isometric to L(xn).
(2) |xn|F (n1,...,nk) is quasi-isometric to log(L(xn)).

We will give specific criteria which will allow us to determine whether any given
element of F (n1, ..., nk) is of type 1 or type 2 above, and this will immediately lead
to a proof of the following theorem.

Theorem 4.1. For all x ∈ F (n1, ..., nk), where 〈x〉 represents the cyclic subgroup
generated by x, |xn|F (n1,...,nk) is quasi-isometric to n = |xn|〈x〉.

First we will show that if L(xn) grows exponentially with respect to n, then
|xn|〈x〉 ∼ log

(
L(xn)

) ∼ |xn|F (n1,...,nk), and if L(xn) grows linearly with respect to
n, then |xn|〈x〉 ∼ L(xn) ∼ |xn|F (n1,...,nk). Then the only task that will remain in
order to proof Theorem 4.1 will be to show that any subgroup 〈x〉 ∈ F (n1, ..., nk)
will fall into one of the following two subsets:

(1) |xn|〈x〉 is quasi-isometric to L(xn).
(2) |xn|〈x〉 is quasi-isometric to log(L(xn)).

Remark 4.1. If |xn|〈x〉 ≤ d log
(
L(xn)

)
for fixed d ∈ R+ for all n, then

|xn|〈x〉 ∼ |xn|F (n1,...,nk) ∼ log
(
L(xn)

)

Proof. By Theorem 3.2 and the hypothesis, there exists c ∈ R+ such that for all n,

c log
(
L(xn)

) ≤ |xn|F (n1,...,nk) ≤ |xn|〈x〉 ≤ d log
(
L(xn)

)

¤
Definition 4.2 (leaf sets). For a given element x = (T−, T+) ∈ F (n1, ..., nk),
we let T ∗− and T ∗+ denote the minimal trees that can be obtained from T− and T+

respectively by adding carets until T ∗− ≡ T ∗+. Then the negative leaf set of x (or the
leaf set of T−) is the set of leaf index numbers

{i|carets must be added to the leaf li ∈ T− to obtain T ∗−}
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We can similarly define the positive leaf set of x (or the leaf set of T+).

Definition 4.3 (depth, D(v), D(T ), D(x), and level). The depth of a vertex v
within a tree is the distance from the root vertex to v. The depth of a tree T is
the maximum distance from the root vertex to any leaf vertex, and the depth of an
element x is the maximal depth of the two trees in its minimal tree-pair diagram
representative. We use D(v), D(T ) and D(x) to denote these depths, respectively.
A level is the subgraph of carets in a tree which are the same distance from the root
vertex.

Lemma 4.1. If |xn|〈x〉 ≥ dL(xn) for fixed d ∈ R+ for all n, then

|xn|〈x〉 ∼ |xn|F (n1,...,nk) ∼ L(xn)

Proof. It is clear that |xn|〈x〉 ∼ L(xn) because putting Theorem 3.2 together with
the hypothesis we have

dL(xn) ≤ |xn|〈x〉 ≤ cL(xn)

for some c ∈ R+ for all n.
Now in order to establish that |xn|F (n1,...,nk) ∼ L(xn) in this case, we prove that

when D(x) ∼ L(x), |x|F (n1,...,nk) ∼ L(x). If D(x) is quasi-isometric to L(x), then
there exists fixed c1 > 0 such that 1

c1
L(x) ≤ D(x) ≤ c1L(x). From the proof of

Remark 5.2 in [16] we have that there exists A ∈ N such that |x|F (n1,...,nk) ≥ 1
AD(x)

for all x ∈ F (n1, ..., nk), and from Theorem 3.2 we have |x|F (n1,...,nk) ≤ CL(x) for a
fixed C ≥ 1 for all x. Putting this together yields 1

Ac1
L(x) ≤ |x|F (n1,...,nk) ≤ CL(x),

which yields 1
C1

L(x) ≤ |x|F (n1,...,nk) ≤ C1L(x) if we define C1 = max{Ac1, C}.
Now to finish our proof, we need only prove that whenever dL(xn) ≤ |xn|〈x〉 for

some d ∈ R+ for all n, L(xn) ∼ D(xn). In this case, we already have L(xn) ∼
|xn|〈x〉, so we only need to show that D(xn) ∼ |xn|〈x〉. First we prove the lower
bound: there exists c1 ∈ R+ such that |xn|〈x〉 ≥ c1D(xn). It is clear that for all
x ∈ F (n1, ..., nk), L(x) ≥ D(x) + 1. To see this we need only note that every level
in a tree-pair diagram must have at least one caret in it; if we build a tree from
the empty tree, the first caret we add will add at least two leaves to the tree, and
every caret after that will add at least one leaf to the tree. So we have

dD(xn) ≤ dL(xn) ≤ |xn|〈x〉
and we need only let c1 = d.

Now we prove the upper bound; we now prove that for all x ∈ F (n1, ..., nk), there
exists c2 ∈ R+ such that for all n, |xn|〈x〉 ≤ c2D(xn). We consider the leaf with
the smallest leaf index number in the leaf set of x and we denote this leaf by lm.
So by definition, when computing x · x, the leaves li ∈ T−, T+ such that i < m will
have no carets added to them during composition. Without loss of generality, we
suppose that lm is in the leaf set of T− (it may or may not also be in the leaf set of
T+). Let S denote the nonempty subtree that is added to lm ∈ T− and let T denote
the (possibly empty) subtree that is added to lm ∈ T+ during the composition x ·x.
Our inductive hypothesis will be that xn has a tree-pair diagram of the form given
in Figure 7, that no carets on the leaf path of lm ∈ (Txn)+ in this diagram can be
canceled, and that D(xn) ≥ D(wm) + (n− 1)D(S).

It is clear that x2 can be represented by the tree-pair diagram given in Figure
8. To see that none of the carets on the leaf path of lm ∈ (Tx2)+ can be canceled,
we need only note that the caret types in S were added to lm ∈ T− during the
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Figure 7. Tree-pair diagram representative for xn.

Figure 8. Tree-pair diagram representative for x2.

composition x · x (and by extension to T+) because they were present on the leaf
path of lm ∈ T+ but not on the leaf path of lm ∈ T−. Likewise, any caret types in
T were present on the leaf path of lm ∈ T− but not on the leaf path of lm ∈ T+.
So in order for any of the carets on the leftmost edge of S in

(
(Tx2)−(Tx2)+

)
to

cancel, they would need to form an exposed caret pair with some carets present
on the leaf path of vm ∈ (Tx2)−, which is identical to the leaf path of lm ∈ T−,
or with carets present in T , but the caret types present in T are identical to types
already found on the leaf path of lm ∈ T−. So none of the carets on the leaf path
of lm ∈ (Tx2)+ can be canceled and therefore D(x2) ≥ D(wm) + D(S).

Now we suppose that our inductive hypothesis is true for
(
(Txn−1)−(Txn−1)+

)
and we consider the product

(
(Txn−1)−(Txn−1)+

)
(T−, T+), which is depicted in

Figure 9. Since the subtrees S and T have no caret types in common, and since
the leaf path of vm ∈ (Txn−1)− is identical to that of lm ∈ T−, we must add
the subtree S to every descendant leaf of vm ∈ (Txn−1)−, which includes the leaf
lm ∈ (Txn−1)−, so by extension we must add S to the leaf lm ∈ (Txn−1)+. Likewise,
we must add a subtree T to the leaf lm ∈ T+ and to lm ∈ T− by extension; then,
because (Txn−1)− has a string of n−2–many T subtrees hanging off the vertex vm,
a string of n−2–many T trees must be added to the leaf lm ∈ T+ and by extension
to the leaf lm ∈ T−, in addition to the single T tree already added. So the end result
will be a tree-pair diagram of the form given in Figure 7. So all we need check is that
none of the carets on the leaf path of lm ∈ (Txn)+ cancel. Again, because T and S
have no caret types in common and because the carets in S were added because they
were present in T+ but not in T−, and because the leaf paths of vm ∈ (Txn)− and
wm ∈ (Txn)+ are the same as the leaf paths of lm ∈ T− and lm ∈ T+ respectively,
we cannot have any exposed caret pairs containing lm ∈ (

(Txn−1)−(Txn−1)+
)
. So
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Figure 9. The product xn−1 · x.

D(xn) ≥ D(wm) + (n− 1)D(S). But since |xn|〈x〉 = n, it is clear that we have

|xn|〈x〉 ≤ 2D(wm) + 2(n− 1)D(S) ≤ 2D(xn)

¤

Now to complete the proof of Theorem 4.1 all that remains is to prove the
following Lemma:

Theorem 4.2. Any subgroup 〈x〉 ∈ F (n1, ..., nk) will fulfil one of the following
conditions:

(1) L(xn) ≥ an for fixed a 6= 1, a > 0 for all n.
(2) L(xn) ≤ bn for fixed b ∈ R+ for all n.

We note that condition 1 of Theorem 4.2 is simply a rewriting of the hypothesis
of Remark 4.1 and that condition 2 is a rewriting of the hypothesis of Lemma 4.1.
The proof of this theorem will be based on the idea that when certain “overlapping”
mismatches of caret types occur in a tree-pair diagram, the number of leaves which
must be added with each increase in the power will be a multiple of those added
in the previous step, while when such and “overlapping mismatch” does not occur,
the number of carets added with each increase in the power will remain constant.
Before we can proceed to this proof, we need to first formalize this idea.

4.1. Proof of Theorem 4.2.

Definition 4.4 (Mismatches). A mismatch is a pair of carets of two distinct types
in the trees T− and T+ with root vertices vm and wm respectively, such that vm and
wm represent the same subinterval of the unit interval.

The significance of mismatches is that, in order to make T− equivalent to T+ (as
will be necessary when computing the product x ·x) any mismatch in T− must have
a caret of opposite type added to every leaf (see, for example the mismatches present
in the composition given in Figure 5); if the index numbers of leaf descendants of
the mismatch line up in the right way, then this will lead to an increasing number
of carets being added to each tree with each new step in the product xn, which will
lead to exponential growth of L(xn).

(1) Irreducible mismatch: An irreducible mismatch is a mismatch for which
no substitution of equivalent subtrees in (T−, T+) will allow the mismatch
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to be removed completely or for the mismatch to be moved to a lower level
in (T−, T+).

In this paper, we will use the convention that all mismatches are irre-
ducible, and so we will use the word mismatch to denote irreducible mis-
matches.

(2) Leaf sets of mismatches: The negative leaf set of a mismatch in (T−, T+)
is the subset of the negative leaf set of (T−, T+) containing all descendants
of the half of the mismatched caret pair in T−. We can likewise define the
positive leaf set of a mismatch.

(3) Opposite mismatch types: We consider a caret ∧i of type n1 in the
negative tree which is one half of a mismatch whose other half has type n2

in the positive tree; we also consider a caret ∧j of type m2 in the positive
tree which is one half of a mismatch whose other half has type m1 in the
negative tree. We say that the two “mismatch halves” ∧i and ∧j are of
opposite mismatch type iff m1 6= n2. For a concrete example of this, see
Figure 10.

Figure 10. This tree-pair diagram contains two mismatches:
(∧0,1,2,∧0,1,2,3,4) and (∧3,4,5,6,7,∧5,6,7) (where the index numbers
given to the carets here are the leaf numbers of their descendants).
The mismatch halves ∧0,1,2 ∈ T− and ∧5,6,7 ∈ T+ are of opposite
type, since τ(∧0,1,2,3,4 ∈ T+) = 5 6= τ(∧3,4,5,6,7 ∈ T−) = 2. How-
ever, ∧0,1,2,3,4 ∈ T+ and ∧3,4,5,6,7 ∈ T− are not of opposite type,
since τ(∧0,1,2 ∈ T−) = 3 = τ(∧5,6,7 ∈ T+).

(4) Disjoint, overlapping mismatch halves: We say that two mismatch
halves are disjoint if their leaf sets are disjoint. We say that two mismatch
halves overlap if the intersection of their leaf sets is non-empty.

(5) Stable mismatches: We say that a mismatch half in y is stable if that
mismatch half overlaps with another mismatch half in yn for all n, or if
that mismatch is disjoint from all other mismatches in yn for all n. For
example, each half of the mismatch which consists of the root caret in both
trees of y0 in Figure 5 is stable, because it will be overlapping for all yn

0 , and
each half of the the mismatch which consists of the root caret in both trees
of x in Figure 11 is stable, because it will be disjoint for all xn. However,
each half of the leftmost child of the rightmost child of the root in Figure
12 (i.e. the caret with leaf index numbers 3 and 4 in the negative tree and
1,2, and 3 in the positive tree) is not stable, because these mismatch halves
overlap for x, but not for x2.

Our proof of Theorem 4.2 will then have the following structure: When there
exists finite N ∈ N for a given x ∈ F (n1, ..., nk) such that all the mismatches in
y ≡ xN are stable, then:
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Figure 11. A tree-pair diagram with a stable disjoint mismatch.

Figure 12. A tree-pair diagram which contains an unstable over-
lapping mismatch.

(1) If an overlapping mismatch exists in y = xN , then L(xn) ≥ an for fixed
a 6= 1, a > 0 for all n.

(2) If an overlapping mismatch does not exist in y = xN , then L(xn) ≤ bn for
fixed b ∈ R+ for all n.

It is clear that if this is true, Theorem 4.2 immediately follows. The proof of this
theorem will have three parts: first we will consider the case when an overlapping
mismatch does occur in y. Next we will show that for any x ∈ F (n1, ..., nk), there
exists fixed N ∈ N such that all the mismatches in y ≡ xN are stable, and finally
we will explore the case in which no overlapping mismatch occurs in y.

Remark 4.2. If a leaf in the leaf set is not a part of a mismatch, or if it belongs
to a mismatch half that is stable and disjoint, then there exists c ∈ R+ such that
the number of leaves contributed to xn by that leaf is cn.

Proof. It is clear that any leaves in the leaf set which are not a part of a mismatch
will always contribute a fixed constant number of leaves in each step of the com-
putation of the power xn, because this is the same as the case F (n). So we need
only consider leaves that belong to stable disjoint mismatch halves. By definition,
a mismatch half that does not overlap with any other mismatch half will have no
carets added to it when computing powers - all added carets will be added to leaves
that are not descended from the mismatch. So if a disjoint mismatch half is stable,
the number of carets contributed to xn by that mismatch half will be nc for some
fixed constant c.

¤

Lemma 4.2. If lm is the first leaf in the leaf set which belongs to an overlapping
mismatch and it is stable, and if all leaves with indexes less than m that are in the
leaf sets of mismatches are stable and disjoint, then L(xn) ≥ an for fixed a 6= 1, a >
0 for all n.

If this lemma holds, and if we can show that for all x there exists a fixed N such
that all mismatches in y = xn are stable, then it immediately follows that anytime
a stable overlapping mismatch exists in y, L(yn) ≥ an for fixed a 6= 1, a > 0 for
all n. So this lemma, coupled with Lemma 4.3 which we will prove below, will
immediately lead to a proof of the first case of Theorem 4.2.
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Proof. We show that whenever an overlapping mismatch exists in x, there exists
fixed a 6= 1, a > 0 such that L(xn) ≥ an for all n. We prove this by showing that if
lm is the first leaf in the leaf set which belongs to an overlapping mismatch, then xn

has the form given in Figure 13, where the number of leaves is clearly exponential
with respect to n. Then we will need to prove that this tree-pair diagram cannot
be significantly reduced.

Figure 13. A tree-pair diagram for xn. The leaf lmn in the do-
main tree denotes the leftmost leaf in the bottom level of Rn. Here
B = min{L(S), L(T )}, b = L(S)− 1, and C = c1 − c2; in this fig-
ure, L(Rn), L(Qn) ≥ O(Bn−1) and An = O(bn−2). In addition,
the subtrees Qn and Rn contain (n − 1)-many levels of S and T
subtrees respectively, where the number of S and T subtrees re-
spectively present in the ith level down in Qn and Rn respectively
is O(Bi−1).

We will prove that xn has the form given in Figure 13 by induction. Again we
let vm and wm represent the vertices in (Txn)− and (Txn)+ respectively which
represent the same subinterval of [0, 1] as lm ∈ T− and lm ∈ T+ respectively. We
let S denote the subtree that must be added to lm ∈ T− in order to make T−
equivalent to T+, and we let T denote the subtree that must be added to lm ∈ T+

in order to make T+ equivalent to T−. We let c1 and c2 denote the number of leaves
added by leaves with index numbers less than m in the negative and positive leaf
sets respectively; from Remark 4.2, we know that these leaves will be added to the
left of vm ∈ (Txi)− and wm ∈ (Txi)+ in each step in the product xn. When n = 2,
xn has the form given in Figure 14; this clearly satisfies our inductive hypothesis.

Figure 14. The tree-pair diagram for x2.

Now we suppose that our inductive hypothesis holds, and we compute xn+1.
First we consider the product x · xn. When computing this product, we will have
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to add c2-many leaves to the left of lmn+An ∈ (Txn)+ and we will need to add
a subtree T to every leaf in the subtree Qn. So the new leaf index number of
lmn+An ∈ (Txn)+ in the resulting tree will be mn + An + c2. Now we must add all
of these carets by extension to the leaves with the same index numbers in (Txn)−
to obtain (Txn+1)−; so lmn+An

∈ (Txn+1)− will be the leftmost leaf in a new level
of T subtrees added to Rn, and therefore the index number of the leftmost leaf in
the new lowest level in Rn+1 will be mn + An + c2. The number of T subtrees
added to the bottom level of Rn is then min{L(Qn), L(Rn)− (An + d2)} for some
d2 ≤ c2, so the new number of leaves in the bottommost level of Rn+1 will be

L(T ) ·min{L(Qm), L(Rm)− (An + d2)}
Now we consider the product xn ·x. When computing this product, we will have

to add c1-many leaves to the left of lmn
∈ (Txn)− and we will need to add a subtree

S to every leaf in the subtree Rn. So the new leaf index number of lmn
∈ (Txn)− in

the resulting tree will be mn +c1. Now we must add all of these carets by extension
to the leaves with the same index numbers in (Txn)+ to obtain (Txn+1)+; so a
new level of S subtrees will be added to Qn and the leftmost leaf in this level will
have index number mn + An + c1 + An · b, where b = L(S)− 1. The number of S
subtrees added to the bottom level of Qn is min{L(Qn), L(Rn)− (An)}, so the new
number of leaves in the bottommost level of Qn+1 will be

L(S) ·min{L(Qm), L(Rm)− (An)}
Now we compute An+1:

An+1 = (mn + An + c1 + An · b)− (mn + An + c2) = bAn + C

where we recall that C = c1−c2. We can then use this to quickly prove the following
inductive hypothesis:

An = O(bn−2)
Now we look at the number of leaves in the bottommost levels of Rn+1 and

Qn+1. In Rn+1 we have that the number of leaves in the bottommost level is:

≥ L(T ) ·min{L(Qn), L(Rn)− (An + d2)}
= L(T ) ·min{O(Bn−1), O(Bn−1)−O(bn−2)}

Then there are two possibilities:
(1) If B ≥ b, then O(Bn−1)−O(bn−2) = O(Bn−1).
(2) If b < B, then O(Bn−1)−O(bn−2) = O(bn−2).

We recall that by definition, lm is a stable overlapping mismatch. This means
that the T subtrees must be added to leaves in Rn when computing xn+1 from
x · xn, and therefore we must have L(Qn) − An > 0 for all n. But since we have
O

(
L(Qn)− An

)
= O(Bn−1)−O(bn−2), this implies that we must have b < B. So

we have:

L(T ) ·min{O(Bn−1), O(Bn−1)−O(bn−2)} = L(T ) ·O(Bn−1) ≥ O(Bn)

Similarly, in Qn+1 we have that the number of leaves in the bottommost level is:

≥ L(S) ·min{L(Qm), L(Rm)−An} ≥ O(Bn)

So it is clear that xn has the form given in Figure 13, and it is clear that the
number of leaves in this tree-pair diagram grows exponentially with respect to n, so
now we need only show that this tree-pair diagram cannot be significantly reduced.
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We consider the lowest level of T subtrees in Rn ∈ (Txn)− and the lowest level of
S subtrees in Qn ∈ (Txn)+. Both of these levels have O(Bn−1) many leaves; these
leaves in (Txn)− begin with leaf index number mn, and in (Txn)+ with leaf index
number mn + An. So the number of leaves in

(
(Txn)−, (Txn)+

)
which are in the

bottommost level of T subtrees in (Txn)− and the bottommost level of S subtrees
in (Txn)+ must be at least

O(Bn−1)−O(An) = O(Bn−1)−O(bn−2) = O(Bn−1)

No we let li denote one of these leaves in
(
(Txn)−, (Txn)+

)
; by definition, T and

S have no caret types in common, so none of the carets on the leaf path of li
which belong to T subtrees in (Txn)− or S subtrees in (Txn)+ can cancel one
another. The only way for a caret on the leaf path of li to cancel will be if subtree
substitution of the type given in Figure 4(a) allows us to move carets present on
the leaf path of vm ∈ (Txn)− or wm ∈ (Txn)+ to the bottom level (we recall that
the leaf path of vm ∈ (Txn)− and wm ∈ (Txn)+ is identical to that of lm ∈ T− and
lm ∈ T+ respectively). But the number of carets on the leaf path of vm ∈ (Txn)−
and wm ∈ (Txn)+ is D

(
vm ∈ (Txn)−

)
and D

(
wm ∈ (Txn)+

)
respectively, and we

have D
(
vm ∈ (Txn)−

)
, D

(
wm ∈ (Txn)+

) ≤ D(x), where D(x) is a fixed constant.
So the maximum number of leaves which can be canceled in this way will be L(x),
which is a fixed constant that is independent of n. Therefore, the number of leaves
in the minimal tree-pair diagram for xn in this case must be at least O(Bn−1). ¤

Lemma 4.3. For any x ∈ F (n1, ..., nk), there exists fixed N ∈ N such that all the
mismatches in y ≡ xN are stable.

Proof. The basic idea behind this proof is simple: we show that if two unstable
mismatch halves go from being disjoint to overlapping as we take powers, they
either perpetually overlap or they move to the “opposite side” of one another (i.e.
their left-right ordering is reversed), and we show that if two unstable mismatch
halves go from being overlapping to disjoint as we take powers, they cannot overlap
again.

We begin by letting m0 be the lowest index number of the leftmost leaf of an
unstable mismatch half in x = (T−, T+); without loss of generality, we can suppose
that this mismatch half is in T−. We let mi represent the index number of the
leftmost leaf descendent of the vertex in

(
(Txi+1)−, (Txi+1)+

)
which represents

the same subinterval of [0, 1] as lm0 ∈ T−. We let ai and bi represent the number of
leaves which must be added to the left of lmi in (Txi)+ and (Txi)−, respectively,
in order to compute xi+1.

We can assume that whenever an ≤ bn, an+1 ≤ bn+1 and that whenever an ≥ bn,
an+1 ≥ bn+1. To see that this is true, we need only claim that an = O

(
c1a

n−e1
1 +

· · ·+cra
n−er
r +d1(n−p1)+· · ·+dr(n−pr)

)
and bn = O

(
C1A

n−E1
1 +· · ·+CsA

n−Es
s +

D1(n− P1) + · · ·+ Ds(n− Ps)
)
. It is clear that this is true because by Lemma 4.2

all leaves in the leaf set which do not belong to mismatches, or which belong to
stable disjoint mismatches will add O(cn) leaves to xn for some fixed c ∈ R+, and
because by Lemma 4.2, all mismatches which are stable and overlapping will add
O(an) leaves to xn for some fixed a > 0, a 6= 1. So it is clear that there exists an
N ∈ N such that for all xn with n ≥ N , an ≤ bn or for all xn with n ≥ N an ≥ bn.
We then need only define y = xN and replace all x’s in the remainder of this proof
with y’s.
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For this proof we must consider two cases. We let lp0 denote a leaf in the leaf
set of the first mismatch half in T+ with index number greater than or equal to
m0. We use similar notation for lp0 as we defined for lm0 above. Then there are
two possibilities:

(1) The leaves lm0 and lp0 do not overlap in (T−, T+), so m0 < p0; when taking
powers we eventually obtain mn = pn for some n.

(2) The leaves lm0 and lp0 overlap in (T−, T+), so m0 = p0; when taking powers
we eventually obtain mn < pn for some n.

These are the only two ways in which a mismatch can be unstable, by definition.
We begin by considering case 1. This can only occur if the “distance” between

lmn
and lpn

shrinks as n grows, i.e. if pn −mn ≤ pn−1 −mn−1 for some n. So we
suppose that we have mi < pi for all i = 1, ..., n−1, and we suppose that pn = mn.
To construct the domain tree of xn+1, we consider x · xn; we must add bn leaves
to the left of lmn−1 and a subtree T to lmn−1 in (Txn)+ and by extension these
leaves are added to the left of lmn−1 and the subtree to lmn−1 in (Txn)−. So we
will have mn = mn−1 +bn. Now we construct the range tree of xn+1 by considering
the product xn · x; we must add an leaves to the left of lmn−1 and a subtree S to
lmn−1 in (Txn)− and by extension these leaves are added to the left of lmn−1 and
the subtree to lmn−1 in (Txn)+. Since mn−1 < pn−1, all of these leaves will be
added to the left of lpn−1 in (Txn)+. So we will have pn ≥ pn−1 + an + L(S) − 1.
So we can only have pn = mn whenever bn −

(
an + L(S)− 1

)
> 0, which will only

happen as long as bn > an and bn ≥ L(S).
Now we compute xn+2 and consider the relationship between pn+1 and mn+1.

To construct the domain tree of xn+2, we consider x · xn+1; we must add bn+1

leaves to the left of lmn and a subtree T to lmn in (Txn+1)+ and by extension
these leaves are added to the left of lmn and the subtree to lmn in (Txn+1)−. So
we will have mn+1 = mn + bn+1. Now we construct the range tree of xn+2 by
considering the product xn+1 · x; we must add an+1 leaves to the left of lmn and
a subtree S to lmn in (Txn+1)− and by extension these leaves are added to the
left of lmn and the subtree to lmn in (Txn+1)+. Since mn = pn, all of these leaves
will be added to the left of lpn in (Txn+1)+, and S is added to lpn . So we will
have pn+1 ≥ pn + an+1. Since we had bn > an, and this implies that bn+1 ≥ an+1,
which yields pn+1 ≤ mn+1. So, once a pair of disjoint mismatch halves becomes
overlapping, they either remain overlapping, or they “cross” one another so that
the mismatch that was to the left is now to the right, and vice versa. Now we will
show that when overlapping mismatches become disjoint, they never overlap with
one another again.

We suppose that m0 = p0, and without loss of generality, we can suppose that
a1 > b1. We consider the product x2: to compute this product, we must add a1-
many leaves to the left of lm0 and a subtree S to lm0 in T−, and by extension these
leaves are added to the left of lm0 and the subtree is added to lm0 in T+. Since
m0 = p0, we have p1 = p0 + a1. Similarly we compute m1 = m0 + b1. So clearly
p1 > m1.

Now we suppose that pi > mi for all i = 1, ..., n; since ai > bi → ai+1 > bi+1, a
simple induction argument will yield ai > bi for all i = 1, ..., n. Now we compute
xn+2 and consider the relationship between pn+1 and mn+1. To construct the
domain tree of xn+2, we consider x ·xn+1; we must add bn+1 leaves to the left of lmn

and a subtree T to lmn in (Txn+1)+ and by extension these leaves are added to the
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left of lmn and the subtree to lmn in (Txn+1)−. So we will have mn+1 = mn +bn+1.
Now we construct the range tree of xn+2 by considering the product xn+1 · x; we
must add an+1 leaves to the left of lmn and a subtree S to lmn in (Txn+1)− and
by extension these leaves are added to the left of lmn

and the subtree to lmn
in

(Txn+1)+. Since mn < pn, all of these leaves will be added to the left of lpn
in

(Txn+1)+, and S is added to lpn . So we will have pn+1 ≥ pn + an+1 + L(S) − 1.
Since we had bn > an, and this implies that bn+1 ≥ an+1, this yields pn+1 ≥ mn+1.
So, once a pair of overlapping mismatch halves becomes disjoint, they never again
overlap; rather, their relative positions to the left and right of one another are
preserved. ¤

Now we proceed to prove Theorem 4.2; the main result of this paper will then
immediately follow.

Proof of Theorem 4.2. This proof has two cases:
(1) L(xn) ≥ an for fixed a 6= 1, a > 0 for all n.
(2) L(xn) ≤ bn for fixed b ∈ R+ for all n.

For the duration of this proof, we assume that all mismatches in x are stable; we can
do this because, if they are not stable, we simply choose N such that all mismatches
in y ≡ xN are stable, and then our proof will hold for y (and by extension, all our
quasi-isometry results will hold for x as well).

We have already proven the fist case as it follows directly from the combination
Lemma 4.2 and Lemma 4.3, so we now proceed to the second case; we will show
that whenever no overlapping mismatches exist in x, there exists fixed b ∈ R+ such
that L(xn) ≤ bn for all n.

If no mismatches exist in x, it is clear that this is true, as this is identical to the
situation in F (ni). So we consider what happens to a stable mismatch that does
not overlap; we let lm be a leaf in the leaf set of x which is in a mismatch such that
all leaves in the leaf set with index less than m add only a fixed constant number
of leaves to the tree-pair diagram in each step of the computation of xn. Without
loss of generality, we can assume that lm is in the negative leaf set. Our goal will
be to show that any leaf lm which satisfies these conditions will contribute (n−1)C
leaves to the tree-pair diagram for xn for some fixed C ≥ 0. It is clear that if this is
true, and that all mismatches in x are disjoint, then L(xn) ≤ bn for some b ∈ R+.

We let lp ∈ T+ be the leftmost leaf in the leaf set of a mismatch in x that may
or may not be distinct from the mismatch containing lm, so that p > m. We let vm

and wm represent the vertices in (Txn)− and (Txn)+ respectively which represent
the same subinterval of [0, 1] as lm ∈ T− and lm ∈ T+, and likewise we let vp and
wp represent the vertices in (Txn)− and (Txn)+ respectively which represent the
same subinterval of [0, 1] as lp ∈ T− and lp ∈ T+.

We consider what happens when we take powers of x and we look specifically
at the number of carets that must be added to the positive tree at each step. We
show inductively that the number of carets added to the positive tree by lm in the
negative leaf set during the process of computing xn will be (n − 1)L(S), where
S is the subtree that must be added to lm in T− to make T− equivalent to T+.
Our inductive hypothesis will be that there exist constants c1, c2 ≥ 0 such that the
leftmost leaf descended from vm ∈ (Txn)− will have index number m + (n − 1)c2

and that the leftmost leaf descended from wm ∈ (Txn)+ will have index number
p + (n − 1)

(
c1 + L(S) − 1

)
. Specifically, c1 and c2 will be the number of leaves
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added to T− and to T+ respectively to the left of lm by leaves in the leaf set with
index number less than m. From the proof of Remark 4.2, we also have that since
m < p and all the leaves in the leaf set with index number less than m add only a
fixed number of leaves in each step, that we must have c2 < c1.

It is clear that our inductive hypothesis holds when n = 1. Now we suppose
that it is true for n and we consider the product xn · x. From the proof of Remark
4.2, we know that since all the leaves in the leaf set with indexes below m add
only a fixed number of leaves in each step, the number of leaves added to the left
of the leftmost leaf descendent of vm in the negative tree and wm in the positive
tree in each step will be the constant c1 and c2 respectively. So, when computing
xn · x, we must add S to lm+(n−1)c2 and we must add c1-many other leaves to the
left of lm+(n−1)c2 ∈ (Txn)−, all of which come from leaves in the original leaf set
of x with indices less than m; then by extension, we add S and c1–many leaves
to the left of l

p+(n−1)
(
c1+L(S)−1

) in (Txn)+, since we must have m + (n − 1)c2 <

p+(n−1)
(
c1 +L(S)−1

)
. We already know from the proof of Remark 4.2 that nc2

leaves will be added to the left of lm in the negative tree when computing xn−1, so
it is clear that our inductive hypothesis holds for n − 1. So when no overlapping
mismatches exist in x, L(xn) ≤ bn for fixed b ∈ R+ for all n. ¤

Remark 4.3. F (n1, ..., nk)n is quasi-isometrically embedded in F (n1, ..., nk).

Proof. This is true for the same reasons that Fn is quasi-isometrically embedded in
F ; see [7], [9], [11], and [12] for details. The idea is that every copy of F (n1, ..., nk)
in the direct product can be mapped to a distinct product of subintervals of [0, 1]
in a specific way; for example, to embed F ×F into F , one need only map the first
factor to [0, 1

2 ] × [0, 1
2 ] and the second factor to [ 12 , 1] × [ 12 , 1]. To adapt this for

F (n1, ..., nk), we can, for example, map the ith factor in the product F (n1, ..., nk)n

to the subset of the unit square: [ i−1
n1

, i
n1

]× [ i−1
n1

, i
n1

]. ¤

Corollary 4.1 (Corollary to Theorem 4.1). Zn is quasi-isometrically embedded in
F (n1, ..., nk) for all n ∈ N.

Proof. This follows immediately from Theorem 4.1 and Remark 4.3. ¤

Corollary 4.2. The asymptotic cone of F (n1, ..., nk) is infinite dimensional.

Proof. See [10] or [6]. ¤
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